être en location - ορισμός. Τι είναι το être en location
Diclib.com
Λεξικό ChatGPT
Εισάγετε μια λέξη ή φράση σε οποιαδήποτε γλώσσα 👆
Γλώσσα:

Μετάφραση και ανάλυση λέξεων από την τεχνητή νοημοσύνη ChatGPT

Σε αυτήν τη σελίδα μπορείτε να λάβετε μια λεπτομερή ανάλυση μιας λέξης ή μιας φράσης, η οποία δημιουργήθηκε χρησιμοποιώντας το ChatGPT, την καλύτερη τεχνολογία τεχνητής νοημοσύνης μέχρι σήμερα:

  • πώς χρησιμοποιείται η λέξη
  • συχνότητα χρήσης
  • χρησιμοποιείται πιο συχνά στον προφορικό ή γραπτό λόγο
  • επιλογές μετάφρασης λέξεων
  • παραδείγματα χρήσης (πολλές φράσεις με μετάφραση)
  • ετυμολογία

Τι (ποιος) είναι être en location - ορισμός

CONCEPT IN STATISTICS
Location family; Location model (statistics); Location parameters

Être Dieu         
OPERA
Etre Dieu
Être Dieu: opéra-poème, audiovisuel et cathare en six parties (French for "Being God: a Cathar Audiovisual Opera-Poem in Six Parts") is a self-proclaimed "opera-poem" written by Spanish surrealist painter Salvador Dalí, based on a libretto by Manuel Vázquez Montalbán with music by French avant-garde musician Igor Wakhévitch. It was originally published in 1985.
Filming location         
  • Hollywood]], the movie neighborhood, before the development of [[location shooting]].
PLACE WHERE FILM OR TV SERIES IS PRODUCED
Location shoot; Shooting location; Substitute filming locations; Filming locations
A filming location is a place where some or all of a film or television series is produced, in addition to or instead of using sets constructed on a movie studio backlot or soundstage. In filmmaking, a location is any place where a film crew will be filming actors and recording their dialog.
Location Songs         
SWEDISH MUSIC PUBLISHER
The Location
Location Songs was a music publisher in Stockholm, Sweden. It was a follow-on to Cheiron Studios, which despite its success, was closed down in 2000.

Βικιπαίδεια

Location parameter

In statistics, a location parameter of a probability distribution is a scalar- or vector-valued parameter x 0 {\displaystyle x_{0}} , which determines the "location" or shift of the distribution. In the literature of location parameter estimation, the probability distributions with such parameter are found to be formally defined in one of the following equivalent ways:

  • either as having a probability density function or probability mass function f ( x x 0 ) {\displaystyle f(x-x_{0})} ; or
  • having a cumulative distribution function F ( x x 0 ) {\displaystyle F(x-x_{0})} ; or
  • being defined as resulting from the random variable transformation x 0 + X {\displaystyle x_{0}+X} , where X {\displaystyle X} is a random variable with a certain, possibly unknown, distribution (See also #Additive_noise).

A direct example of a location parameter is the parameter μ {\displaystyle \mu } of the normal distribution. To see this, note that the probability density function f ( x | μ , σ ) {\displaystyle f(x|\mu ,\sigma )} of a normal distribution N ( μ , σ 2 ) {\displaystyle {\mathcal {N}}(\mu ,\sigma ^{2})} can have the parameter μ {\displaystyle \mu } factored out and be written as:

g ( y μ | σ ) = 1 σ 2 π e 1 2 ( y σ ) 2 {\displaystyle g(y-\mu |\sigma )={\frac {1}{\sigma {\sqrt {2\pi }}}}e^{-{\frac {1}{2}}\left({\frac {y}{\sigma }}\right)^{2}}}

thus fulfilling the first of the definitions given above.

The above definition indicates, in the one-dimensional case, that if x 0 {\displaystyle x_{0}} is increased, the probability density or mass function shifts rigidly to the right, maintaining its exact shape.

A location parameter can also be found in families having more than one parameter, such as location–scale families. In this case, the probability density function or probability mass function will be a special case of the more general form

f x 0 , θ ( x ) = f θ ( x x 0 ) {\displaystyle f_{x_{0},\theta }(x)=f_{\theta }(x-x_{0})}

where x 0 {\displaystyle x_{0}} is the location parameter, θ represents additional parameters, and f θ {\displaystyle f_{\theta }} is a function parametrized on the additional parameters.